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Notes of ECE 646 : Theoretical Formulations and Simulations HTE – 21.02.2012

1. Introduction

In atmosphere near the ground due to changes in wind velocity and temperature, refractive index changes by small amounts causing what is

called turbulence. These changes will give rise to fluctuations in amplitude and phase of the optical wave propagating in such a medium. Since

there is randomness, we characterize propagation through atmosphere by statistical quantities to be added to the usual Huygens – Fresnel

integral.

We remind that in free space, where there are no refractive index changes with respect to spatial or temporal coordinates, the Huygens Fresnel

integral reads
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The presence of turbulence will be expressed an exponential term in the form of  exp ,r s   , where  ,r s is the random part of the complex

phase of a spherical wave propagating in the turbulent atmosphere from the source plane to the receiver plane at located at a distance z from the

source. (1.1) and (1.2) are converted into extended Huygens – Fresnel integral as shown below
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But we are rarely interested in the received field under atmospheric turbulence conditions. A more useful quantity in this case is the average

intensity which is obtained from
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where and * refer to averaging and conjugate operations. It is clear from (1.3) and (1.4) that averaging will be applicable only to the random

quantity  exp ,r s   , since the other terms of the integrand are deterministic. This way, the average intensity on the receiver plane after a source

beam of  su s propagates in turbulent atmosphere will become
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Note that since in intensity, the receiver plane coordinate difference is zero,  exp ,r s   term turns into  exp s   .
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where t is the spatial coherence length and is given by   5/32 20.545t nC k L


 with 2
nC is known the structure constant, denoting the turbulence

level.

By inserting the expressions from (1.8) into (1.6) and (1.7), we can obtain the average receiver intensities of different beams propagating in

turbulent atmosphere. Note that in both cylindrical and Cartesian coordinates, it is sufficient to perform only the double integration for the terms

of indexed as 1, then the remaining double integration will be symmetrical.

Below we perform a sample derivation for a Sinusoidal  Hyperbolic Gaussian beam.
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2. The average intensity expression for partially coherent Sinusoidal Hyperbolic Gaussian beam propagating in turbulence

From the notes of ECE 635, we write the source plane field for this beam in Cartesian coordinates as
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where A is the amplitude coefficient, 21/( ) 0.5 /s sk j F   with  ands sF respectively referring to Gaussian source size and focusing parameter,

D is the displacement parameter. Considering the form of partial coherence exponential in the derivation of mutual coherence function on pp. 14-

17 of Notes for ECE 635, is similar to the turbulence exponential, we may benefit from the derivation of Notes for ECE 635 by establishing the

following equivalence,
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The arrangement in (2.2) implies that in (5.17) of ECE 635_Free space propagation notes_Eylul 2011_HTE, we need to replace all occurrences

of 2
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in addition to the settings of 1 2 1 2,x x x y y yr r r r r r    . Under these circumstances, the average intensity on the receiver

plane of a partially coherent Sinusoidal Hyperbolic Gaussian beam after propagating in turbulence will become
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Exercise 2.1 : Use ParCoh_SinoHypR_tur.m MATLAB file to plot the average intensity profiles of cos, cosh, sine, sinh and annular
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Gaussian beams. Take measurements on these profiles and compare those measurements with those obtained from ParCoh_SinoHypR.m

2 0nC  , which means free space limit, for at least five source and propagation settings. Also include in your report how intensity profiles of

these beams change when 2 15 -2/3 2 14 -2/3 2 13 -2/310  m ,  10  m ,  10  mn n nC C C     .

3. Rytov Scintillation Theory

Born Approximation

For a scalar field U propagating in an turbulent atmosphere (characterized as random medium) whose refractive index is given by  n R , the

Helmholtz equation is

     2 2 2 0   ,  , ,  or  , ,                (3.1)x y rU k n U r r z r z    R R R

where    0 1                            (3.2)n n n R R

such that    0 11,  0n n n  R R . Furthermore      
22

0 1 11 2n n n n     R R R since  1 1n R  . To solve (1.1) using Born

approximation, we assume that we can expand  U R as follows (note that we use  U R and U synonymously)

       0 1 2       (3.3)U U U U   R R R R
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This way  0U R is the unperturbed free space field,  1U R is the perturbed field due to first order scattering (caused by turbulence),  2U R due

to second order and so on. The usual assumption is that      0 1 2U U UR R R  . Substituting (3.3) in (3.1) and using the approximation of

the refractive index, thereby equating the same ordered terms (bear in mind that  1n R adds order of one), we get
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2 2
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(3.4) means once 0U is known, then it is possible to determine higher order    1 2,U UR R . To obtain  1U R form  0U R , we use the following

integral
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where  ,G S R is the free space Green’s function defined as

   1, exp                           (3.6)
4

G jk


 


S R R S
R S

By noting that the changes in the transverse distances are much less than those in the longitudinal distances, thus we can employ paraxial

approximation, then with notation of    , ,  ,L zR = r S = s and the Green’s function will become  ,G S R (here s is used as a dummy receiver

coordinate and should not be confused with source coordinate s )
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Inserting (3.7) into (3.5), we get
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For a general order m, (3.8) will simply turn into
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It is important to point out that Born approximation is valid only over extremely short propagation distances. But above formulation will be

useful for Rytov method described below.

Rytov Approximation

In Rytov method, the main distinction is that perturbations due to randomness of the propagation medium are represented by an exponential

complex phase as shown below

       0, , exp ,        (3.10)U U L U L L    R r r r

Here complex phase  , Lr can be expanded as
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The numerically indexed terms can be termed as first and second order perturbations. We can apply (3.10) to (3.1) to arrive at Rytov solutions.

But it is much simpler to obtain those from the already developed Born approximation. To this end we introduce the normalized Born pertubation

defined as

 
 
 0

,
,      1, 2,3,.....             (3.12)

,
m

m

U L
L m

U L
 

r
r

r


Now we equate first order Rytov and Born perturbations such that
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, , exp                 (3.15)

, 2 , 2

L jkU L U z n zkL L dz d s jk L z
U L U L L z L z




 



          
  

s rr s s
r r

r r


By equating Rytov and Born perturbations up to the second order, we find that

       

           
1 2 1 2

2
1 2 1 1 2 1

, , ln 1 , ,

                               , , 0.5 ,     since , 1 and , , (3.16)

L L L L

L L L L L L

       
  

r r r r

r r r r r r 

 

     
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Using (3.14),  2 , Lr will be

     2
2 2 1, , 0.5 ,                         (3.17)L L L  r r r 

where  2 , Lr can be written as

 
 
   

 
 

     
 

22
2 0 1 12

2
0 0 0

, , , ,
, exp                (3.18)

, 2 , 2

L jkU L U z z n zkL dz d s jk L z
U L U L L z L z

 



         
  

s rr s s s
r

r r




As we shall see below, for scintillation the use of  1 , Lr will be sufficient, whereas the calculation of  ,U Lr will require second order

perturbation.

Now covering the first and second order perturbations we need the following (ensemble) averages for the field, intensity and intensity square

       

             

   

1 2

* * *
1 2 1 1 2 1 1 2 2 2

2
1

,   requires the calulation of exp , exp , ,

,    requires the calulation of exp , , exp , , , ,

,  requires the calulation of exp ,

U L L L L

I L L L L L L L

I L L

  

     

 

       
             



r r r r

r r r r r r r

r r      

               

* *
2 3 4

* * * *
1 1 2 1 1 2 2 2 1 3 2 3 1 4 2 4

, , ,

             exp , , , , , , , ,         (3.19)

L L L

L L L L L L L L

 

       

    
          

r r r

r r r r r r r r

By using the following second order approximation

   22exp exp 0.5           from (14) of Andrews 2005 on pp.184          (3.20)        
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and noting that  1 0n R (as indicated above), thus  1 , 0L r due to (3.15), then we find for the ensemble averages of the exp expressions

in (3.19)

     

           

               

       

1 2 1

* *
1 1 2 1 1 2 2 2 1 2 1 2

* * * *
1 1 2 1 1 2 2 2 1 3 2 3 1 4 2 4

1 2 1 2 2 1 4 2 2 3 2

exp , , exp 0,0

exp , , , , exp 2 0,0 ,

exp , , , , , , , ,

    exp 4 0,0 , , ,

L L E

L L L L E E

L L L L L L L L

E E E E E

 

   

       

       
           
         

    

r r

r r r r r r

r r r r r r r r

r r r r r r      *
3 4 3 1 3 3 2 4, , ,                                  (3.21)E E    r r r r r r

where, 1 2 3,   andE E E in terms of 1 2 and  are

     

     

     

2
1 2 1

*
2 1 2 1 1 1 2

3 1 2 1 1 1 2

0,0 , 0.5 ,

, , ,

, , ,  (3.22)

E L L

E L L

E L L

 

 

 

 





r r

r r r r

r r r r

By using the definitions given in (3.15), (3.17) and (3.18), it is possible to evaluate 1 2 3,   andE E E . Despite the awkward appearance however,

1E comes out the simplest, source beam independent and contains only spectrum function dependence.

Scintillation index as a measure of normalized variance of amplitude fluctuations in the beam that has traversed a turbulent medium is given by

 
   

 

 

 

22 2
2

2 2

, , ,
, 1                             (3.23)

, ,

I L I L I L
m L

I L I L


  

r r r
r

r r
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Here the numerator (of the first expression) refers to the statistical definition of variance, while the  
2

,I Lr serves for normalization. It

is possible to acquire quantities  2 ,I Lr and  
2

,I Lr , that is average intensity square and squared average intensity by defining mutual

coherence function  related to the above developments. This way

             

           

       

* * *
0 0

* * *
0 0 1 1 2 1 1 2 2 2

*
0 0 1 2

, , , , , , exp , ,

                    , , exp , , , ,

                    , , exp 2 0,0 ,

L U L U L U L U L L L

U L U L L L L L

U L U L E E

 

   

     
      
   

1 2 1 2 1 2 1 2

1 2

1 2 1 2

r r r r r r r r

r r r r r r

r r r r



                                (3.24)

         

               

       

* *

* * * *
0 0 0 0

* *
0 0 0 0

, , , , , , , ,

                          , , , , exp , , , ,

                          , , , ,

L U L U L U L U L

U L U L U L U L L L L L

U L U L U L U L

   



      


1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4

r r r r r r r r

r r r r r r r r

r r r r



             

           

*
1 2 2 2 2 3 3

*
2 2 3 3

     exp 4 0,0 , , , + , , ,

                          , , , , exp , , , ,                                   (3.25)

E E E E E E E

L L E E E E

       
      

1 2 1 4 2 3 3 4 1 3 2 4

1 2 3 4 1 4 2 3 1 3 2 4

r r r r r r r r r r r r

r r r r r r r r r r r r 

We know that intensity is equal to the mutual coherence function whose transverse coordinates ( sr ) are made coincident. This means that
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                   

           

2 22 2 2 * 2 *
0 0 1 2 0 0 1 2

2 * *
0 0 0 0

1

, , , , , exp 4 0,0 2 , , , exp 4 0,0 2 ,

, , , , , , , , ,

                exp 4 0,

I L L U L U L E E U L U L E E

I L L U L U L U L U L

E

                         
         



1 2 1 2 1 2

1 2 3 4 1 2 3 4

r r r r r r r r r r r r r r r r r

r r r r r r r r r r r r r r r r r





             

                 

      

*
2 2 2 2 3 3

22 * *
0 0 1 2 2 2 2 3 3

2
2 3

0 , , , + , , ,

               , exp 4 0,0 , , , + , , ,

               , exp 2 , 2Re ,

E E E E E E

U L U L E E E E E E E

I L E E

       
           

    

1 2 1 4 2 3 3 4 1 3 2 4r r r r r r r r r r r r

r r r r r r r r r r r r r

r r r r r                                    (3.26)

Substituting (3.26) in (3.23) will deliver

 
      

 

                

2
2 32

2

*
2 3 2 3 1 1 1 1

, exp 2 , 2Re ,
, 1

,

             exp 2 , 2Re , 1 2 , 2Re , 2 , , 2Re , ,             (3.27)

I L E E
m L

I L

E E E E L L L L   

    

                 

r r r r r
r

r

r r r r r r r r r r r r

The approximation on the second line of (3.27) is due to    2 32 , 2Re ,E E   r r r r being too small under weak turbulence conditions. (3.27)

shows that calculation of scintillation index is reduced to the evaluation of a single function, namely  1 , Lr or rather the ensemble averages of

 1 , Lr multiplied by its conjugate and by itself (i.e. 2 3 andE E ).

If we consider (3.15), we come to the conclusion that the ensemble operation to be applied to  1 , Lr will entail only  1 ,n zs , since all other

terms in (3.15) are deterministic. Thus
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   
 

   
   

   
  

   

2 24
1* 2 2

1 1 1 1 122 10 00

*
0 0 1 1 *

1 1 1 1
1

, , exp
2 24 ,

, ,
                                , ,

L L jk jkkL L dz dz d s d s jk L z jk L z
L z L zU L

U z U z
n z n z

L z L z

 


   

 

            


 

     
s r s r

r r
r

s s
s s            (3.28)

Now we take out    1 1 1 1, ,n z n zs s and consider this term together with distance integrals. From pp. 145 of Andrews 2005, we know that

refractive index fluctuations 1n can be written as two dimensional Reimann-Stieltjets integral, then

           * *
1 1 1 1 1 1 1 1 1 1

0 0 0 0

, , exp exp , , (3.29)
L L L L

dz dz n z n z dz dz j j d z d z 
   



          s s

κ s κ s κ κ

Here    *
1 1, ,d z d zκ κ  is related to spectral density function nF whose in turn is related to spatial power spectrum function n via Fourier

Transform relationship, thus

       * 2 2
1 1 1 1 1, , ,                         (3.30)nd z d z F z z d d      κ κ κ κ κ

Substituting (3.30) into (3.29) and performing the double integration over 1 taking into account the delta function in (3.30) will give

         * 2
1 1 1 1 1 1 1 1

0 0 0 0

, , exp exp ,                               (3.31)
L L L L

ndz dz n z n z dz dz d j j F z z
 



         s s

κ s κ s κ
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As  explained on pp. 148 and 149 of Andrews 2005, we benefit from the fact that nF has its spectrum mostly confined to the region around 1z z .

This way we can make a change of distance variables to sum and difference of 1 andz z and extend the range of integration over the difference to

minus and plus infinity so that we can replace the density function nF by the spectrum function n . Hence eventually we get

         * 2
1 1 1 1 1 1

0 0 0

, , 2 exp exp                               (3.32)
L L L

ndz dz n z n z d d j j  
 



       s s

κ s κ s κ



Note that  is the new distance variable. We could have equally used z, so the change to  is merely to be in line with the notation of Scintillation

Formulation Via Rytov_HTE_Nisan 2009 notes. By inserting the result found in (3.32) back into (3.28), leads to the following

   
     

   
 

     

 

 
 

   

2 2 *4
1 0 0 1* 2 2 2

1 1 1 12 22
00

24

02 22
0 0 00

, ,2, , exp exp exp
2 24 ,

2  , , exp cos
4 ,

L

n

L
n

jk jk U UkL L d d s d s d j j
L L LU L

k d d d dsd sU s j s
LU L



 

    
  

          


     

  



            

 


      

  

s r s r s s
r r

κ s κ s κ

r

r




 

         

2
2

0 0

2 2
* 2 2 *

1 1 1 0 1 1 1 1 1 1 1
0 0 0 0 0

exp 2 cos
2( )

, , exp cos exp 2 cos 2   , , , , , , , ,
2( )

r

L

r n r r

jk s sr
L

jkds d s U s j s s s r d d H r H r
L



 

  

 


                  




 

               

                  

 

                (3.33)

On the last line of (3.33), the equivalence to (7) of notes Scintillation Formulation Via Rytov_HTE_Nisan 2009 is established.

To get    1 1, ,L Lr r  or 2E , we keep in mind that  1 ,n zs is a real function, which means

           * 2 2
1 1 1 1 1 1 1, , , , ,                                  (3.34)nd z d z d z d z F z z d d          κ κ κ κ κ κ κ
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So the above of    *
1 1, ,L Lr r  can be applied to    1 1, ,L Lr r  by changing all 1κ with κ , in this manner    1 1, ,L Lr r  will be

   
     

   
 

     

 
 

 

2 24
1 0 0 12 2 2

1 1 1 12 2 2
0 0

24 2

2 2 2
0 0 0 0

, ,2, , exp exp exp
2 24 ,

2  exp
4 ,

L

n

L
n

jk jk U UkL L d d s d s d j j
L LU L L

k jkrd d d dsd
LU L L





    
  

     
 

     

  



            
      

      

  

s r s r s s
r r

κ s κ s κ

r

r




     

       

2
2

0
0 0

2 2
2 2

1 1 1 0 1 1 1 1 1 1 1
0 0 0 0 0

, , exp cos exp 2 cos
2( )

, , exp cos exp 2 cos 2   ,
2( )

r

L

r n r

jksU s j s s sr
L

jkds d s U s j s s s r d d H r
L





 



      


             




 

               

                  

 

         , , , , , , ,          (3.35)rH r       

Finally we remind that in terms of scintillation index under weak fluctuation conditions will be given by

              2 *
2 3 1 1 1 1, 2 , 2Re , =2 , , Re , ,                (3.36)m L E E L L L L            r r r r r r r r r

Below we give an application example of the above type derivation.

Sample scintillation derivation for Sinusoidal Hyperbolic Gaussian beam

We cite source field as

   2

1

, exp sin cos            in cylindrical coordinates          (3.37)
N

s s s s su s A k s D s


        


   

The first step is to find  0 ,U Lr , which is the free space receiver field. From Q1 of MT Exam of ECE 635 dated 22.11.2011, we have
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     2 1 22

0 0
1

cos sin
,

1 2 1 2
, , exp                  (3.38)r r s s

r

k r rD jk D LAU L U
j L j L

r L




        
r   

  

  
 



Now we apply the double integration over s in (3.15) including the κ exp from  1 ,n zs or apply (7) from Scintillation Formulation Via

Rytov_HTE_Nisan 2009 to obtain

 
  
 

 
 

 
 

 

 
 

222

1

2 2

1

1 2 1 2
, , , , 0.5 cos cos sin

1 2 1 2 1 2 1 2 1 2

exp cos sin
1 2 1 2 1 2

exp

ex

s
r r

s s
r r

j L j r j D LA k rH r jk j
j L j L k j L j L k j L

rD D L Aj
j L k j L j L

   
               

    

 
  





                  
 
        





   

    

  

  

 2 1 2cos sin
               (3.39)

1 2
p r r s sk r rD jk D L

j L
  



       

  



Lab Exercise : Verify (3.39) by using the following useful formulations

   
2

2 2
0

0

exp cos sin 2      for integration over the dummy variable inserted for       (3.40)rdx jp x jq x J p q


   

   
 

2
1 2

1
0

exp  exp      for integration over the dummy variable inserted for     (3.41)
42

dxx ax J x r
aa




 
 






       


Now we take the (modified) definition of  H , which is

 
   

     
22 2

2
1 1 1 0 1 1 1 1 1 1

0 0 0
1, , , , exp exp cos exp 2 cos     (3.42)

2 , , 2( ) 2( )
, ,r r

r

k jkr jkH r dr d rU j r r r r
L U r z L L L

r z


          
    

 
                         

 
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After insering for  0U into (3.42) from (3.38), the integration over 1 looks like

1

2
1 1

1 1 1 1 1 1 1
0

exp cos cos cos sin sin sin                   (3.43)
1 2 1 2

s s
r r

r D r Djk jkI d j r rr j r rr
L j L L j L



          
   

                           
  

 

By making an association between (3.43) and (3.40), we get  andp q as (note that we exclude 1r , since it is common to all terms)

cos cos      ,      sin sin              (3.44)
1 2 1 2

s s
r r

jD jDk kp r q r
L j L L j L      

   
     

   
 

 

So the result of (3.43) will be  1

2 2
0 12I J r p q   , where  andp q are as defined in (3.44). With this solution, the integration over in (3.32)

will look like

 1

2 2
2 21 1

1 1 0 1
0

 exp                   (3.45)
1 2 2( )r

k r jkrI dr r J r p q
j L


  

  
        

 



This time making an association between (3.45) and (3.41), we get ,   anda  as

   
     

2 2 22 1 2 1 20,   ,            (3.46)
1 2 2( ) 2 1 2 2 1 2

L j jk j Ljka k jk p q
j L j L j L

     
        

   
      

     
  

  

Now collecting amplitude factor terms, denoted by AF

 
  
 

2 1 2
2       (including the amplitude factor belonging to the summation over )    (3.47)

2 1 2 1 2 1 2
j LA AkAF j jk

L j k j L j L
  


     

 
 

   
 

  

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2 2p q will be

   
   

  
 

22 2
2 2 2

2 2
2 22 cos cos sin cos sin                    (3.48)

1 2 1 21 2
s s s

r r r
D D krDk r k rp q j j

L j L jL j
  

      
       

         
    

  

 

  
 

 
  

 
  

 
 

 
   

2 2 22 2 1 2 1 2 1 2
exp exp cos

4 2 1 2 2 1 2 1 2 1 2 1 2

cos sin cos sin
1 2 1 2

s
r

s s
r r

j L kr j D L r jp q j j j j
a k j L j L L k j j L j L

D L rD
j L j L



 

         
 

      


   

 

                         
       

   

    

 

 
          (3.49)

Combine 2
sD  exp term of (3.38) with the third term of (3.49) to get

 
 

    

22 2
exp exp exp                           (3.50)

1 2 1 2 1 2 1 2
ss sD LD D Lj j j

k j k j j L k j L


     

                       

 

   

Further combine
2

exp
2( )

jkr
L 

 
 
  

outside the integration in (3.42) with second term of (3.49) to get

 
  

2 22 21 2 1 2exp exp exp 1 exp                  (3.51)
2( ) 2 1 2 2( ) 1 2 1 2

kr j j k rjkr jkrj
L j L L L j L j L

    
     

                                                   

  

  

Now collect all terms to write for
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 
  
 

 
 

 
 

 

 
 

222

1

2 2

1

1 2 1 2
, , , , 0.5 cos cos sin

1 2 1 2 1 2 1 2 1 2

exp cos sin
1 2 1 2 1 2

exp

ex

s
r r

s s
r r

j L j r j D LA k rH r jk j
j L j L k j L j L k j L

rD D L Aj
j L k j L j L

   
               

    

 
  





                  
 
        





   

    

  

  

 2 1 2cos sin
               (3.52)

1 2
p r r s sk r rD jk D L

j L
  



       

  



which is the same as (3.39). Now for scintillation index  2m , we have to compute        *  and .., ,.. .., ,..H H H H  . Since  2m will entail

integration over  , it is best to handle this part of the integration during this process. For this, we consider only the relevant terms which are

third and fourth terms of the first exponential.

A) For    *H H


     

1 2 1 2 1 2

11 2 1 2 1 22 1 1 1 2 1 2

* * *2 2 2 2 2 2

* * * * 2
1 1 1 1 1 1

                        (3.53)
1 2 1 2 1 2 1 2 1 2 4

A A A A A A
j L j L j L j L j L L            

 
      

          

           


 

1 2 1 2

1 2 1 2 1 2

2 * 2 *
2

* * * 2
exp  (3.54)

1 2 1 2 1 2 4
exp exp

k r k r
kr

j L j L j L L

   
     

                                   

   

     


  

 
  

 
 

 
21 1 2

1 2 1 2 1 2

2 *2 2 *2

* * * 2

1 21 2
0.5 0.5 exp                   (3.55)

1 2 1 2 1 2 4
exp exp

j Lj L L
j j

kk j L k j L j L L

         

     

                                   

  

     


 

 
 

 
  

 
 2 1 21

1 2 1 2 1 2

* *

* * * 2

1 2 21 2
cos cos exp cos           (3.56)

1 2 1 2 1 2 4
exp expr r r

j r j r Lj r j

j L j L j L L
  

        
     

     

                                     

  

     
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

 

 
 

 

 
 

 
     

 

1 2

1 2

1 2 2 1

1 2 1 2

*

*

* *

* * 2

cos sin cos sin
1 2 1 2

1 2 1 2
exp cos sin

1 2 4

exp exps s

s s

D L D L

k j L k j L

D j L D j LL
k j L L

   

 

   
   

 

  
 

   

                  
                         

 

 

   

   

                  (3.57)

      
   
 

1 2 2 11 2

1 2 1 2 1 2

* **

* * * 2

1 2 1 2
exp cos sin exp cos sin exp cos sin  (3.58)

1 2 1 2 1 2 4

s ss s
r r r r r r

D j L D j LrD rD
r

j L j L j L L

 
     

     

                                           

    

     


 

 
 

     
 

2 1 2 2 1

1 2 1 2 1 2

* *2 2 * 22

* * * 2

1 2 1 2
exp exp exp                            (3.59)

1 2 1 2 1 2 4

s s ss
D L D j L D j LD Lj j jL

k j L k j L k j L L

 

     

                                            

    

     

Now arrange for integration over  such that

   
2

2 2
1 1 0 1 1

0

exp cos sin 2                      (3.60)d p q I p q


           

By associating (3.56) and (3.57) with (3.60), we identify 1 1 andp q as

  
 

   
 

  
 

   

1 2 1 2 2 1

1 2 1 2 1 2 1 2

1 2 1 2 2 1

1 2 1 2 1

* * *

1 * * 2 * * 2

* * *

1 * * 2

2 1 2 1 2
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1 2 4 1 2 4

2 1 2 1 2
sin

1 2 4 1 2

s s
r

s s
r

r L D j L D j LLp
kj L L j L L

r L D j L D j LLq
kj L L j

    
       

    
     

      
   

        

    
 
    

     

       

     

      2 1 2

* * 2
                              (3.61)

4L L 

 
 
 
    
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This way  1/ 22 2
1 1p q will be

   

         

        

1 2 1 2 2 1

1 2 1 2

1 2
1 2 1 2 1 2 1 2 2 1

21/ 2 2 * 22 2 2 * 2 * 2
1 1 2* * 2

*
* * 2 * * *

2

24 1 2 1 2
1 2 4

4 41 2 4 cos sin 1 2 1 2

s s

s s
r r s s

L
p q r D j L D j L

kj L L

D D rj L L D j L D j L
kk


   

   

         

  
       

    

                   

     
   

 
         

1/ 2

              (3.62)


Now we continue with terms of    .., ,.. .., ,..H H 

B) For    .., ,.. .., ,..H H 


 

1 2 1 2

1 21 1 1 2 1 2 1 2

2 2 2 2

2
1 1 1 1

                        (3.63)
1 2 1 2 1 2 4

A A A A
j L j L j L L        


    

      

        


 

1 2 1 2 1 2

1 2 1 2 1 2

2 2
2

2

4
exp  (3.64)

1 2 1 2 1 2 4
exp exp

k r k r j L
kr

j L j L j L L

     
     

                                  

     

     


  

 
  

 
    

 
1 2 1 2 1 2

1 2 1 2 1 2

2 2 2

2

1 2 1 2 1 4
0.5 0.5 exp                   (3.65)
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exp exp

j L j L j L LL
j j j

kk j L k j L j L L

              

     

                                                

     

     


 

 
 

 
  

 
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2

1 2 1 2 2
cos cos exp cos           (3.66)

1 2 1 2 1 2 4
exp expr r r
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         

     
     

                      
        

     

   

     
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

 

 
 

 

 
 

 
     

 

1 2

1 2

1 2 2 1

1 2 1 2

2

cos sin cos sin
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1 2 1 2
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   

 

   
   

 

  
 

   

             
    
   
                     

 

 

   

   
    (3.67)

      
   
 

1 2 2 11 2

1 2 1 2 1 2

2

1 2 1 2
exp cos sin exp cos sin exp cos sin  (3.68)

1 2 1 2 1 2 4
s ss s

r r r r r r
D j L D j LrD rD

r
j L j L j L L

 
     

     

                                          

    

     


   

   
 

1 2 2 12

1 2 1 2 1 2

2 222

2

1 2 1 2
exp exp exp                            (3.69)

1 2 1 2 1 2 4
s sss

D j L D j LD LD Lj j jL
k j L k j L k j L L

 

     

                                      

   

     

Now arrange for integration over  such that

   
2

2 2
2 2 0 2 2

0

exp cos sin 2                      (3.70)d p q I p q


           

By associating (3.66) and (3.67) with (3.70), we identify 2 2 andp q as

  
 

   
 

  
 

   
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2 2 2
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r

r L D j L D j LLp
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r L D j L D j LLq
kj L L j L L

    
       

    
       

          
      
 
    

 
     



     

       

     

       
                              (3.71)


 
 
 


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This way  1/ 22 2
2 2p q will be

   
       

        

1 2 1 2 2 1

1 2 1 2

1 2
1 2 1 2 1 2 1 2 2 1

21/ 2 2 22 2 2 2 2
2 2 22

1/2
2

2
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L
p q r D j L D j L
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D D rj L L D j L D j L
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
   

   

         

  
       

    

                   

     
   

 
               (3.72)

By using

           

        

2 2 *
1 1 1 1

2
2

0 0 0

, , , 2 , , 2Re , ,

             4   , , , , Re , , , , , , , ,       (3.73)

r

L
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d d d H r H r H r


   

    

                


      

      

r r r r r



After inserting for  H in (3.73) from (3.52), using von-Karman spectrum and then performing the integration over  with the help of (3.70),

then scintillation index expression in (3.73) for sinusoidal hyperbolic Gaussian beam will become
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                  

     


where
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 
 

1 2 1 2

1 2 1 2

* * 2

2

0 0

1 2 4

1 2 4   (3.75)

: Inner scale of turbulence, : Outer scale of turbulence

da

dc

C j L L

C j L L

L

   

   

   

   

   

   



Lab exercise, the above is given in Scin_SinoHyp_L.m MATLAB file on the course webpage. Find and compare scintillation values from this m

file and to the graphs provided in A15 and A16.
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4. Scintillation Formulation via Extended Huygens-Fresnel Integral

For this method we go back to (R23) which is

 
 

 

2
2

2

,
, 1                             (4.1)

,

I L
m L

I L
 

r
r

r

which means that we have to evaluate  2 ,I Lr , i.e. average squared intensity (on receiver plane) and  ,I Lr , i.e. average intensity, The

latter,  ,I Lr is relatively easy and given by (1.6) or (1.7), while  2 ,I Lr is relatively difficult, since in this case we need  ,r s in the fourth

order, i.e.,        * *, , , ,     1 2 3 4r s r s r s r s . Note that in  ,I Lr , second order of  ,r s , i.e.    *, , 1 2r s r s is used as also

apparent from (1.6) and (1.7). From the literature, we get the fourth order moment (in Cartesian coordinates) as (only the x part is shown)

         

 

* * 2 2 2 2
1 2 3 4 1 3 2 42

2 2 2 2
1 2 3 4 1 2 1 3 1 4 2 3 2 4 3 42

2
2

exp , , , , exp 2 2

1exp 2 2 2 2 2 2

1 2 exp

x x x x x x x x
s

x x x x x x x x x x x x x x x x
t

t

j s s s s s s s s

s s s s s s s s s s s s s s s s

 
                  

                  

 

1 2 3 4r s r s r s r s




   






 

 

2 2 2 2
1 2 3 4 1 2 1 4 2 3 2 4 3 4

2 2 2 2 2
1 2 3 4 1 2 1 3 1 4 2 3 3 42

2 2 2 2 2 2 2

1 2 exp 2 2 2 2 2 2 2

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x
t

s s s s s s s s s s s s s s

s s s s s s s s s s s s s s

 
          

              
 

   (4.2)
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In the classic approach, we would attempt to derive  2 ,I Lr and  ,I Lr by hand and thus obtain analytic expressions. While this is

valuable, it is also difficult, particularly in the case of hand derivation of  2 ,I Lr . We could use numeric integration, but then the correct

estimation of lower and upper limits (to be used instead of minus infinity and plus infinity) create problems, besides  2 ,I Lr entails at least

quadruple integration.

To solve these problems, we have developed a semi-analytic method, which we now explain.

Let’s take either the x (one dimensional) part of  2 ,I Lr or the whole of  ,I Lr , for the beams within our interest, the quadruple integral in

these two cases would look like

   

  31 2 4

2 2 2 2
1 2 3 4 11 1 22 2 33 3 44 4 12 1 2 13 1 3 14 1 4 23 2 3 24 2 4 34 3 4

1 1 2 2 3 3 4 4 1 2 3 4

exp exp 2 2 2 2 2 2

exp 2 2 2 2 nn n n

I dt dt dt dt q t q t q t q t q t t q t t q t t q t t q t t q t t

r t r t r t r t t t t t

   



          

   

   
  (4.3)

To reduce the quadruple integral of (4.3) to the case of a single integral, initially we isolate one integral, namely the one with respect to 1t as

follows

     32 4 12 2 2 2
2 3 4 22 2 33 3 44 4 23 2 3 24 2 4 34 3 4 2 2 3 3 4 4 2 3 4 1 11 1 1 1exp 2 2 2 exp 2 2 2 exp 2 (4.4)nn n n

gI dt dt dt q t q t q t q t t q t t q t t r t r t r t t t t dt q t r t t
   

 

              
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where 1 12 2 13 3 14 4gr r q t q t q t    . Now using a modified version 3.462.2 of [I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series and

Products (Academic, 2000)] which is

    2/ 22
2

1 2
0

1 2
exp 2 !exp                       (4.5)

( 2 )!(2 )!

n in
n

i
i

ir rdt qt rt t n
q q n i i q

   




                   


The isolated integral in (4.4) can be solved, hence (4.4) will reduce to the following triple integral
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                                 

 
       



  

   
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13 13 14 1 1312 14 1 12 1 14
2 3 24 2 4 34 3 4 2 2 3 3 4 4

11 11 11 11 11 11

2 3 4

2 2 exp 2 2 2

nn n

q q q r qq q r q r qt t q t t q t t r t r t r t
q q q q q q

t t t

                                                                             
         

   14
2

1 12 2 13 3 14 4                           (4.6)
n ir q t q t q t 

  

The last term of (4.6) can be expanded via Binomial formula, and the result can be rearranged so that integral with respect to 2t can be managed

individually again by the use of (4.5). The development continues in this manner until all the integrations have been performed. To facilitate an

easy track of equation development, the Matlab function ExpPolyHerm4 is organized as the main function plus the others named ExpPoly4,

ExpPoly3, ExpPoly2, ExpPoly1, which call each other in numeric sequence to transform the quadruple integral into triple, quadruple and single

integrals, while the main function ExpPolyHerm4 initiates the first call and makes the final evaluation. The Hermite polynomials can be handled

by writing for their series expansions and embedding the arising powers of 1 2 3 4,  ,   andt t t t into 1 2 3 4,  ,   andn n n n in (4.3).
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Below we illustrate the use of this semi-analytic method. For this, we take the Cartesian coordinate representation of (lowest order) Sinusoidal

Hyperbolic Gaussian beam which is

     2 2

1

, exp 0.5 exp 0.5        (4.7)
N

s x y x x x x y y y yu s s A k s D s k s D s


                  


 

After adding partial coherence to this beam, we get the mutual coherence function of the source as
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The corresponding extended Huygens-Fresnel integral is

 

 

1 2

1 2

1 1 1 1

2 2 2 2
1 2 1 2 1 2 1 2*

1 1 2 2 2
1 1

2 2
1 1 1 1

2 2 2
, , exp

2 2

                   exp 0.5 0.5

N N
x x y y x x y y

x y x y x y
s

x x x x y y y y

s s s s s s s s
I r r L A A ds ds ds ds

L

k s D s k s D s

k
 

 

 

   



              
    

      
 

     

 

2 2 2 2

* 2 * * 2 *
2 2 2 2

2 2 2 2
1 2 1 2 1 2 1 22 2 2 2

1 1 1 1 2 2 2 2 2

exp 0.5 0.5

2 2
                   2 2 2 2 exp

2
exp

x x x x y y y y

x x y y x x y y
x x x y y y x x x y y y

t

k s D s k s D s

s s s s s s s sjk s r s s r s s r s s r s
L
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

         
                        

   

            (4.9)

Now all we have to do is prepare the following matrices
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   
11 12 13 14

12 22 23 24 1 2 3 4
1 2 3 4 1 2 3 4

13 23 33 34 1 2 3 4

14 24 34 44

  ,   ,    ,   (4.10)

q q q q
q q q q m m m m
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 

   

where the elements are to be determined by making an association between (4.3) and (4.9) and then writing the following equivalences

1

2

1

11 12 34 13 142 2 2 2

*
22 23 242 2

33 442 2

1 1 1 10.5    ,         ,      0
2 2 2

1 10.5 +    ,      0
2 2
1 10.5    ,      0.5

2 2

x
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s t
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jkq k q q q q
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 


 

         

    

    
2

*
2 2

1 1                                (4.11)
2 2y

s t

jk
L  

  

1 2 1 2

* *
1 2 3 40.5  ,   0.5  ,   0.5  ,   0.5               (4.12)

2 2 2 2
y yx x

x x y y

jkr jkrjkr jkrr D r D r D r D
L L L L              

1 2 3 4 1 2 3 4 1 2 3 4=0       0       0                  (4.13)n n n n m m m m c c c c          

Note that matrix M refers to the existence of Hermite polynomials, i.e. higher orders in the source expression of (4.7). In the present case, since

we deal with lowest order, all matrix elements of M are zero.

Exercise 4.1 : Now we turn to a MATLAB exercise. On the course webpage you will find the m code Sino_Hyp_Her4.m which plots the source,

that is    1 2 1 2, ,s x y s x x x y y yI s s s s s s s s     and receiver, that is  , ,x yI r r L , intensity profiles along the slanted axis. Run this m file for

all beam types (4.7) is able to generate, i.e. Gaussian, cos Gaussian, cosh Gaussian, sine Gaussian, sinh Gaussian, annular Gaussian beams,
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comparing at least two readings of each beam intensity levels with those produced by ParCoh_SinoHypR_tur.m or Transmittance635.m at the

same source and propagation settings. Note that to evaluate  , ,x yI r r L by the semi-analytic method, you have to download from the course

webpage the m files, exppoly1.m, exppoly2.m, exppoly3.m, exppoly4.m, ExpPolyHermLagu401.m which can handle source beams

incorporating Laguerre polynomials as well.
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Evaluation of  2 ,I Lr via semi-analytic method

For this we initially write for  2 ,I Lr for the x part only, which is

 
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   

 

4
2 2 2 2 2

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 44

2 2 2 2 2
1 2 3 4 1 3 2 4 1 22 2

, , , , exp 2 2 2 2
22

1      exp 2 2 exp
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         

where for a Kolmogorov spectrum, that is   2 11/30.033n nC   , 2 2 7 / 6 11/ 60.124 nC k L  ,   1/ 213/ 6 2 5/ 60.1134S nk C L


 . (4.14) is in the form of

 2 ,x Ax Bx CxI r L I I I   . This means  2 ,yI r L will be

 2 ,y Ay By CyI r L I I I   . Then  2 ,I Lr will be obtained from

         2 2 2, , , = + +                 (4.15)x y Ax Bx Cx Ay By Cy Ax Ay Bx By Cx CyI L I r L I r L I I I I I I I I I I I I       r
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Hence  2 ,I Lr can be evaluated in two steps once by calling ExpPolyHermLagu401.m for x part, then calling the same for y part. Note also

that (4.15) points to a dot product multiplication. Now by inserting the x part of Sinusoidal Hyperbolic Gaussian beam for  1 2 3 4, , ,s x x x xs s s s ,

(4.14) will become

 
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               
 
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    










 2

4 1 2 1 3 1 4 2 3 3 42 2 2 2 2                (4.16)x x x x x x x x x x xs s s s s s s s s s
         

Now by making an association between the alike integration variables of (HF3) and (HF16), it is possible to construct the following matrices.

Keep in mind that for xQ matrix we have to prepare slightly different matrices of ,  ,Ax Bx CxQ Q Q as apparent from (HF15)
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   

          
 
 

         
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            (4.17b)

   0 0 0 0    ,    0 0 0 0           (4.17c)x yN N 

0 0 0 0 0 0 0 0
, (4.17d)

0 0 0 0 0 0 0 0x yM              M   
    
   

For smaller matrices, , ,R  N  M , both x and y parts are shown in (4.17).

Exercise 4.2 : Exercise Now we turn to a MATLAB exercise. On the course webpage you will find the m code Sino_Hyp_Her4HFScin.m. Use

this m file to generate scintillation plots for the same Gaussian, cos Gaussian, cosh Gaussian, sine Gaussian, sinh Gaussian and annular Gaussian



36

beams which are displayed in Figs. 1 to 10 of the article entitled, “Scintillation calculations for partially coherent general beams via extended

Huygens Fresnel integral and self-designed Matlab function”, which is also available on course webpage (Fig. 1 of this article is reproduced in

Fig. 4.1 below). Also plot the scintillation index curves for partially coherent versions of these beams. Furthermore, for off-axis positions, where

,  0x yr r  , repeat the above.
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Fig. 4.1 Fig. 1of the article entitled, “Scintillation calculations for partially coherent general beams via extended Huygens Fresnel integral and

self-designed Matlab function”.
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5. Complex Degree of Coherence

Now we study the complex degree of coherence,   which is expressed by

 
 

   
1 2

1 2
1 1 2 2

| |
              (5.1)

, ,
, ,

, , , ,
r

r r

L
L

L L



 

r r
r r

r r r r


where  r is a two point mutual coherence function. If a source beam having a two point mutual coherence function of  s propagates in

turbulence for a distance of L, then  r can be defined as

        
    

1 2 1 2 1 2 1 1 2 2

2
1 2 1 2 1 2 1 2

2 2 22

2 2

,, , / 2 d d exp / 2

                      exp / (5.2)t

r sL k L jk L
 



      

      

 

    

  2 2 s s r s r s

s s r r

r r s s

s s r r





Note that in (5.2), in the turbulence exponential, there is the extra term of    1 2 1 2 s s r r , where  signifies dot product, arising since on the

left hand side of the equation, mutual coherence function rather than intensity is required. Remember that in intensity expression 1 2r r , thus

   1 2 1 2 s s r r equates to zero. In the present study, we take the source to be a partially coherent sinusoidal hyperbolic Gaussian beam in

Cartesian coordinates, then from (5.9) of Notes for ECE 635_Eylul 2011, we have
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Inserting (5.3) into (5.2), we get
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The various terms in (CDC4) are defined as follows (for x part only)
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After evaluating  1 2, ,r L r r as shown in (CDC4), we can retrieve  1 1, ,r L r r and  2 2, ,r L r r simply by equating 1 2andr r . The relevant m

code is contained in ComplexD_coh_ECE646.m.
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Lab Exercise

1) Verify the derivation (5.4)

2) By running the code given in ComplexD_coh_ECE646.m file, match your figures pointwise with those of Figs. 1, 2, 3, 4, 6, 7, 8, 9 of the

article, H. T. Eyyuboğlu, Y. Baykal ve Y. Cai, “Complex degree of coherence for partially coherent general beams in atmospheric

turbulence”, Journal of the Optical Society of America A (JOSA A), 24(9), 2891-2901 (2007) whose pdf copy is given on the course

webpage.

3) Note that in the present setting, ComplexD_coh_ECE646.m runs for five beams, namely cosh Gaussian beam, cos Gaussian beam,

Gaussian beam, annular Gaussian beam and higher order Gaussian beam. The last beam is not covered in the present formulation.

Replace this last beam settings alternately by sine and sinh Gaussian beams, taking into account the zero crossings of these beams at on-

axis point.

4) Prepare your report and hand it to me in paper format.
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