Notes of ECE 646 : Theoretical Formulations and Simulations HTE —21.02.2012

1. Introduction

In atmosphere near the ground due to changes in wind velocity and temperature, refractive index changes by small amounts causing what is
called turbulence. These changes will give rise to fluctuations in amplitude and phase of the optical wave propagating in such a medium. Since
there is randomness, we characterize propagation through atmosphere by statistical quantities to be added to the usual Huygens — Fresnel
integral.

We remind that in free space, where there are no refractive index changes with respect to spatial or temporal coordinates, the Huygens Fresnel

integral reads
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The presence of turbulence will be expressed an exponential term in the form of exp [z//(r,s)] , where y (r,s) is the random part of the complex

phase of a spherical wave propagating in the turbulent atmosphere from the source plane to the receiver plane at located at a distance z from the

source. (1.1) and (1.2) are converted into extended Huygens — Fresnel integral as shown below
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But we are rarely interested in the received field under atmospheric turbulence conditions. A more useful quantity in this case is the average

intensity which is obtained from

<I(r,z = L)> = <ur (r,z=L)u, (r,z= L)> notation in either coordinates, where r = (r,¢,) orr = (rx,ry)
<I(r,¢r,z = L)> = <”r (r.¢,,z=L)u, (r,¢,,z= L)> in cylindrical coordinates
<[(rx,r ,Z = L)> = <ur (rx, FZ= L) (rx,ry,z L)> in Cartesian coordinates (1.5)

v
where < > and * refer to averaging and conjugate operations. It is clear from (1.3) and (1.4) that averaging will be applicable only to the random
quantity exp [z//(r,s)] , since the other terms of the integrand are deterministic. This way, the average intensity on the receiver plane after a source
beam of u,(s) propagates in turbulent atmosphere will become
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Note that since in intensity, the receiver plane coordinate difference is zero, exp[l//(r,s)J term turns into eXpl:l//(S):I.

w (r,s,)+y (r,.s,) is known as the wave structure function and for spherical wave, we use the following

2 2, 2
S —s s; +55 — 2585, cos| @, — @, . oo .
<eXp[l//(S1,¢S1)+l//* (Sza¢s2 )D:exp —M =exp|— L= : 22 ( LR ) in cylindrical coordinates
Pr Pr
2 2,2, 2 2
" S, —S§ S48y +si 485, — 28,85, — 28,8 . . .
<exp[y/(slx,s1y)+1// <s2x,s2y )D:exp s ,022' —ex [— T 2;2 D2x ey in Cartesian coordinates  (1.8)
t t

—5/3
where p, is the spatial coherence length and is given by p, = (0.545C§k2L) with C? is known the structure constant, denoting the turbulence

level.

By inserting the expressions from (1.8) into (1.6) and (1.7), we can obtain the average receiver intensities of different beams propagating in
turbulent atmosphere. Note that in both cylindrical and Cartesian coordinates, it is sufficient to perform only the double integration for the terms
of indexed as 1, then the remaining double integration will be symmetrical.

Below we perform a sample derivation for a Sinusoidal Hyperbolic Gaussian beam.



2. The average intensity expression for partially coherent Sinusoidal Hyperbolic Gaussian beam propagating in turbulence

From the notes of ECE 635, we write the source plane field for this beam in Cartesian coordinates as

u, (sx, sy) = ZN: 4, exp[—(O.Skaﬂsf - ngsxﬂ exp[—(O.Ska},zsi — Dyfsy> (2.1)
=1

where 4, is the amplitude coefficient, o =1/(kar’)+0.5/ F, with e, and F,respectively referring to Gaussian source size and focusing parameter,

D is the displacement parameter. Considering the form of partial coherence exponential in the derivation of mutual coherence function on pp. 14-
17 of Notes for ECE 635, is similar to the turbulence exponential, we may benefit from the derivation of Notes for ECE 635 by establishing the
following equivalence,

Turbulence exponential Partial coherence exponential
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The arrangement in (2.2) implies that in (5.17) of ECE 635 Free space propagation notes Eylul 2011 HTE, we need to replace all occurrences

2,2
> £r > in addition to the settings of ,, =1, =r,, 1, =r,, =r,. Under these circumstances, the average intensity on the receiver

of o7 by 2% 1 5
N t

plane of a partially coherent Sinusoidal Hyperbolic Gaussian beam after propagating in turbulence will become
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Exercise 2.1 : Use ParCoh_SinoHypR tur.m MATLAB file to plot the average intensity profiles of cos, cosh, sine, sinh and annular



Gaussian beams. Take measurements on these profiles and compare those measurements with those obtained from ParCoh_SinoHypR.m

C? — 0, which means free space limit, for at least five source and propagation settings. Also include in your report how intensity profiles of

these beams change when C2 =107 m™??, ¢? =10 m™??, 2 =107 m™??.

3. Rytov Scintillation Theory

Born Approximation

For a scalar field U propagating in an turbulent atmosphere (characterized as random medium) whose refractive index is given by n (R) , the
Helmbholtz equation is

VU +Kn’ (R)U=0 , R=(r,r,,z) or R=(r.¢,z) 3.1)

ol
where n(R)=n, +n (R) (3.2)

such that 7, = (n(R)) =1, {n, (R))=0. Furthermore n*(R)=[n, +n, (R)] 21+ 2n, (R) since |n, (R)|<1. To solve (1.1) using Born
approximation, we assume that we can expand U (R) as follows (note that we use U (R) and U synonymously)

U(R)=U,(R)+U,(R)+U,(R)+-- (3.3)



This way U, (R) is the unperturbed free space field, U, (R) is the perturbed field due to first order scattering (caused by turbulence), U, (R) due
to second order and so on. The usual assumption is that ‘UO (R)‘ > ‘U : (R)‘ > ‘U , (R)‘ . Substituting (3.3) in (3.1) and using the approximation of

the refractive index, thereby equating the same ordered terms (bear in mind that n, (R) adds order of one), we get

VU, +kU, =0
VU, +k°U, = =2k’n, (R)U, (R)
VU, +k’U, ==2kn,(R)U, (R) (3.4)

(3.4) means once U, is known, then it is possible to determine higher order U, (R), U, (R). To obtain U, (R) form U, (R), we use the following
integral

R)=[[[ G SR[zk m( )O(R)]d35 (3.5)

where G(S,R) is the free space Green’s function defined as

G(S,R)= exp( jk|R —8)) (3.6)

1
4z|R—§|
By noting that the changes in the transverse distances are much less than those in the longitudinal distances, thus we can employ paraxial
approximation, then with notation of R=(r,L), S=(s,z) and the Green’s function will become G(S,R) (here sis used as a dummy receiver

coordinate and should not be confused with source coordinate s )
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G(S,R)——F— k(L — B 3.7
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Inserting (3.7) into (3.5), we get
Lo _ Jkls—r[* | Uy(s,2)
UI(R):ZOCZZ_{O_OOd sexp| jk(L—z)+ 2=7)| - n (s,z) (3.8)
For a general order m, (3.8) will simply turn into
kz L % 2 . jk|s—r|2 Um_l(S,Z)
Um(R):EOdZ{OOOd sexp|jk(L—z)+ 2=z) -z n(s,z) (3.9)

It is important to point out that Born approximation is valid only over extremely short propagation distances. But above formulation will be
useful for Rytov method described below.

Rytov Approximation

In Rytov method, the main distinction is that perturbations due to randomness of the propagation medium are represented by an exponential

complex phase as shown below
U(R)=U(r,L)=U,(r,L)exp|y(r,L)] (3.10)
Here complex phase  (r,L) can be expanded as

l,y(r,L)zt//1 (r,L)+1//2 (r,L)+l,y3 (r,L)+z//4 (r,L)+--- (3.11)



The numerically indexed terms can be termed as first and second order perturbations. We can apply (3.10) to (3.1) to arrive at Rytov solutions.

But it is much simpler to obtain those from the already developed Born approximation. To this end we introduce the normalized Born pertubation

defined as

O, (r,L):Z m=1,2,73,... (3.12)
Now we equate first order Rytov and Born perturbations such that

U, (r,L)exp|y, (r,L)|=U, (r,L)+ U, (r,L)=U, (r,L)[14+ ®,(r,L)] (3.13)
From (3.13), we find y, (r,L) to be

v, (r.L)=Mh[1+® (r,L)|=®, (r,L) since |®,(r,L)<]1 (3.14)

Thus y, (r, L) will become

U, (r,L) I A U Jkls—r[*| Uy (s,2)m (s,2)
L)~ ® L)= = d d k(L —
v (r,L) = (r,L) Uy (rL) 220, (r,L) z_{c_{o sexp| jk(L—z)+ 2L—z) -2

By equating Rytov and Born perturbations up to the second order, we find that

v, (r,L) +y, (r,L) =In [1 + O, (r,L) +O, (r,L)]

~,(r,L)+®,(r,L)—0.5®; (r,L)  since |®,(r,L) < 1and |®,(r,L)|<|®,(r,L)

(3.15)

(3.16)



Using (3.14), v, (r,L) will be
w,(r,L)=®,(r,L)—0.5®] (r,L) (3.17)

where @, (r,L) can be written as

_Uy(rL) K I S N r| Upy(8,2)®@(s,2)n(s,z)
@, (r,L)= Un(eil) 2e00L)) dz_foo_fwd sexp| jk(L—z)+ T = (3.18)

As we shall see below, for scintillation the use of y, (r,L) will be sufficient, whereas the calculation of <U (r,L)> will require second order
perturbation.
Now covering the first and second order perturbations we need the following (ensemble) averages for the field, intensity and intensity square

<U(r,L)> requires the calulation of <exp[y/ (r, > <exp[l//1 (r,L) +y, (r L)D
plw (1, L)+ (1, L)) = (exp[w, (1, L)+ (5, L)+, (1, L)+ (1, L))
(rs,

L)]

(exply (1.2)

<12 (r,L)> requires the calulation of <exp w(rl,L) +v ( >+ yAr. ) ( )D
)

<I (r,L)> requires the calulation of

= (exp|v (1, L)+ w7, (5, L) 97 (6, L) 45 (1, L) 4y, (1, L) 0, (1, L) 97 (6, L) 495 (v, L)) (3.19)

By using the following second order approximation

(exp(y)) = exp[<w> +0.5((y)- (Wﬂ from (14) of Andrews 2005 on pp.184  (3.20)

10



and noting that <n1 (R)> = 0 (as indicated above), thus <1//1 (r,L)> = 0 due to (3.15), then we find for the ensemble averages of the exp expressions

in (3.19)

: (rz,L)D = exp|2E, (0,0)+ E, (r,,, )|
;(rZ’L)+l//l (1'3,L)+l//2 <r3’L)‘H//1* (r4’L)‘H//; (r4aL)]>
)4+ E, (5,.1,)+ E, (r,,r, )+ E, (1,1, + E; (rz,r4)] (3.21)

=
e

where, E|, E, and E in terms of y, and v, are

1. L)y, (r,,L)) (3.22)
By using the definitions given in (3.15), (3.17) and (3.18), it is possible to evaluate E,, E, and E, . Despite the awkward appearance however,
E, comes out the simplest, source beam independent and contains only spectrum function dependence.

Scintillation index as a measure of normalized variance of amplitude fluctuations in the beam that has traversed a turbulent medium is given by

e (e.0) <12(r,L)>—<I(2r,L)>2 <12(r,L)>_1

(3.23)

11



Here the numerator (of the first expression) refers to the statistical definition of variance, while the <I (r,L)> serves for normalization. It

is possible to acquire quantities <I ? (r,L)> and <1 (r,L)>2 , that is average intensity square and squared average intensity by defining mutual

coherence function I related to the above developments. This way

)
=U, (r,,L)U, (r,,L)exp|2E, (0,0)+ E, (r,.r, )] (3.24)

2
=I(r,r,,L)T r3,r4,L)exp[E2 (r.r,)+E, (r,,5,)+ E, (1,5, + E, (rz,r4)] (3.25)

We know that intensity is equal to the mutual coherence function whose transverse coordinates (rs) are made coincident. This means that

12



(I(r,L)) =T*(r,=r,r,=1,L)= L)[U; (1, =1, L)] exp[4E, (0,0)+2E, (r, =1, =1)| = U (r,L)[U; (r.L)]| exp[4E, (0,0)+2E, (r.r)
<12(r,L)> I(r,=r,y,=r,r,=r,r,=r L) U, (r,=v,L)U, (r, =r,L)U, (r,=v,L)U, (v, =r1,L)

xexp[4E, (0,0)+ B, (1,1, )+ B, (11,1, + B, (15,85 )+ B, (15,5, )+ By (1,1)+ B (15,1, )|

= U2 (r,L)[U; (L)] exp[4E, (0,0)+E, (r,x) + E, (r.r) + E, (r,r)+ E, (r.r) + E, (r,r) + E; (r.r)

:<I(r,L)>2 exp{2E (r r +2Re[E r,r } (3.26)

Substituting (3.26) in (3.23) will deliver

(1,1 = <I (r,L>>2 exp{2E2 (r,r) ;I— 2Re[E3 (r,r)]} »
(1(r.L))
= exp{2E2 (r,r) + ZRe[E3 (r,r)]} —1=2F, (r,r) + 2Re[E3 (r,r)] = 2<1//1 (I‘,L)l/ll* (r,L)> + 2Re[<l,y1 (r,L)t//1 (r,L)>] (3.27)

The approximation on the second line of (3.27) is due to 2E, (r,r) + 2Re[E3 (r,r)] being too small under weak turbulence conditions. (3.27)
shows that calculation of scintillation index is reduced to the evaluation of a single function, namely y, (r,L) or rather the ensemble averages of
w, (r, L) multiplied by its conjugate and by itself (i.e. E, and E, ).

If we consider (3.15), we come to the conclusion that the ensemble operation to be applied to y, (r,L) will entail only n, (s,z), since all other

terms in (3.15) are deterministic. Thus

13



L 00 00 00 00

. 2, 2
<'//1(1’aL)l//1*(l‘,L)> zfdzfdzlf fdzsf fdzslexp jk(L—z)—jk(L—zl)—i-]k's_r' _]k|sl—r|

2|U0 r,L) 0 Telhe ho 2(L-z) 2(L-7)
U, (s,2)Uq (s, .

Now we take out <”1 (s,2)m (sl,zl)> and consider this term together with distance integrals. From pp. 145 of Andrews 2005, we know that

refractive index fluctuations », can be written as two dimensional Reimann-Stieltjets integral, then

fdzfdzl<nl s Z)I’ll - >

0 0

L 00 00 00 00 7 7
dzfdzlf f f fexp i+ Jexp(—j - 1)<ah/( z)dv ( l,zl)> (3.29)
0 —00 —00 —00 —00

o%h

Here <dv(x,z)dv* (xp,2 )> is related to spectral density function F,whose in turn is related to spatial power spectrum function ®,, via Fourier

Transform relationship, thus
<dv(|c,z)dv* (1,2, )> =F, (k|z—z])0 (k — x| )d’xd’K; (3.30)

Substituting (3.30) into (3.29) and performing the double integration over x; taking into account the delta function in (3.30) will give

L L L L o oo o o N
[z [az(n(s.2)m (s1,2)) = [z [az [ [ @*kexp(j - Jexp(—j - )F,( =) (3.31)
0 0 0 0 —00—00
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As explained on pp. 148 and 149 of Andrews 2005, we benefit from the fact that £ has its spectrum mostly confined to the region around z =~ z,.
This way we can make a change of distance variables to sum and difference of z and z, and extend the range of integration over the difference to

minus and plus infinity so that we can replace the density function F, by the spectrum function ®, . Hence eventually we get

fdzfdzl<nl S,z nl (s1.2, > 272'fdf7f fdzlcexp < Jexp(—j - )P, () (3.32)

0 0 —00—00

Note that 7 is the new distance variable. We could have equally used z, so the change to 7 is merely to be in line with the notation of Scintillation

Formulation Via Rytov. HTE Nisan 2009 notes. By inserting the result found in (3.32) back into (3.28), leads to the following

<1// (e, L) (r L)> jdﬂj}‘ jdzs‘? szs 7‘ ‘T‘dzkexp ]k|S | jk|81—r|2 UO(S,U)U;(Sp’?)eXp(j Dexp(—j - )0, ()
o o 4'7Z-Z|UO 2 —00—00 —00—00 l—oc —00 77) 2<L_77) (L-T])z ! "
L o0 o) o027
47[2|U0 { fd/({d(ﬁ,( ’((L—Z’)(Z){{dsd(ﬁon (s,¢,r7)exp[j7cscos(¢—¢K)]exp{2(LJ_ n)[sz —2srcos(¢5—¢,)”
27 . o0 27
xffdsldﬂslUS(sl,(/ﬁl,n)exp[—jicsl cos(¢1—¢,()]exp{2(zj_k )[ — 25,7 cos (4 — 4, ]]» Zﬂfdnffdzlg(q) (r,@y oK H (7,658 s7) (3.33)
00

On the last line of (3.33), the equivalence to (7) of notes Scintillation Formulation Via Rytov. HTE Nisan 2009 is established.

To get <1//1 (r,L)y, (r,L)> or E,, we keep in mind that n, (s,z) is a real function, which means

(dv(,2)dv(ky,2)) = (dv(x.2)av" (—1.2,)) = F, x,

z—z|)8(k+x))d kd K (3.34)

15



So the above of <1,//1 (r,L)y; (r,L)> can be applied to <V’1 (r.L)y, (r,L)> by changing all k, with —x , in this manner <1//1 (r.L)y, (r,L)> will be

L 00 00 00 00 00 00 . 2
2 2 2 ]k|s 1’| Jk|51—1'| Uo(SaU>U0<S1>U) . L
(v (r.L)w (r.1)) 2U0 { 7 OO{Cd s{céd Slfoofood S T2 T exp(j - Jexp(=j - 1)@, ( )
oo (K ik 2 Yoo2r

47r2U0 fdﬂfd/(fdgéK _77)2) JKr {{dsd¢sU0 s, 4,1 exp[]Kscos(qﬁ ¢K)] {2(;_ )[Sz —2srcos(¢—¢,.)”

0027w 027
xffdsldqﬁlslUO(sl,qﬁl,n)exp[—jlcslcos(;ﬁl—¢K)]exp<[2(Ljf77)[ —2syrcos(d — 4, }} 2;rfd77ffd2/c/<cb (K)H (r.¢,.x.¢e,0)H (r,¢.,— K. .77 (3.35)
00

Finally we remind that in terms of scintillation index under weak fluctuation conditions will be given by
m’ (x,L)=2E, (r,r) + 2Re|E, (r,v)|=2{ (v, (r, L)y (. L))+ Re[{w, (r, L)y, (r,2))]} (3.36)

Below we give an application example of the above type derivation.

Sample scintillation derivation for Sinusoidal Hyperbolic Gaussian beam

We cite source field as

N
u, (s,0,) = 4, exp [—kozys2 + (sin ¢, + cos @, )Dsﬁs] in cylindrical coordinates (3.37)

=1

The first step is to find U, (r,L), which is the free space receiver field. From Q1 of MT Exam of ECE 635 dated 22.11.2011, we have

16



ka,r* —(cos¢, +sing, )rD,, — jk'D’L
1+2jo,L

U, (r.L)=U, (., L) =Y ——exp| -

=1 1—|—2]O¢L

(3.38)

Now we apply the double integration over s in (3.15) including the k exp from n, (s,z) or apply (7) from Scintillation Formulation Via

Rytov_ HTE Nisan 2009 to obtain

2 ko, r? 'S (1+2jam)(L—n) jxr(l1+2ja 77)
H(r, ¢, ,5.4,, ——_05j ! !
sty gem) = J ;1+2 a,L exp 1+2ja,L / k(1+2ja,L) " 1+2ja,L os{de =4) -
rD,, , . DiL 204, _ka,r* —(cosg, +sing, )rDy, — jk'D}L
Xexp 71+2ja£L(COS¢’+Sm¢’>+jk(1+2 ) /;1+2ja(Lexp 14 2)ja,L

Lab Exercise : Verify (3.39) by using the following useful formulations

27
f dxexp ( Jjpcosx+ jgsin x) =2rJ, (\/ p* +q* ) for integration over the dummy variable inserted for ¢,
0

ﬂZ

4a

:)fdxx”l exp(—axz) J, (Bx)= (25)11//“ exp

Now we take the (modified) definition of H ( ), which is

for integration over the dummy variable inserted for »

k2
272'(L—77)U0 (r, r,Z:L>

Jjkr
2(L—=m)]Y <

exp

2 ‘xZﬁ

H(r.g,.x.6.1)=

KDS[ (L 77)

k(1+

2]a/L)

(3.40)

@3

[ [ drdnu, (1.¢,2 =n)exp|jxri cos (¢, — 4, eXP{

A1)

Jjk
2(L—m)

(cosg, +sing,)

(3.39)

|7 =257 cos (¢, — 4, )]} (3.42)
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After insering for U, ( )into (3.42) from (3.38), the integration over ¢ looks like

2z
Iy :fd¢l exp
0

ik D : ik : D .
J F¥, COS @, —I—rl—.sf cosgy +| jxrsing, — / rr sing, —I—H—_S"} sing (3.43)
L—n 14+2ja,L L—n 14+2ja,L

By making an association between (3.43) and (3.40), we get p and g as (note that we exclude 7, since it is common to all terms)

. . ‘D
, g=kKsing,.— rsing, — st

=KCOSQ,_ — r —_— S e—
P 2 L—n 1+2ja,L L—n 1+ 2ja,L

(3.44)

So the result of (3.43) will be 1, =27J, (rﬁ/ pPr+q° ) , where p and ¢ are as defined in (3.44). With this solution, the integration over in (3.32)

will look like

00 2 g 2
ke, K
1, = [dn nexp|-——t 4 ST ]—/o(ijx/pz—qu) (3.45)
0

1+2joyn  2(L—1)

This time making an association between (3.45) and (3.41), we get v, a and S as

. 2oL —1)— i(1+27 .
oo am ek Zellon U em) g  Medjel g 2yp g
1+2ja,n  2(L—n) 2(1+2jam)(L—n) 2(1+2jam)(L—n)
Now collecting amplitude factor terms, denoted by AF
2 1+2; L—
AF = k 27 A i ( jaéﬂ)( 77) = jk 4 (including the amplitude factor belonging to the summation over /) (3.47)
2z(L—n) 1+2jen”  k(1+2je,L) 14+ 2ja,L
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p* +¢° will be

2krD,,

k2 D; 2krkcr 2D :
2 2 2 sl . sl . .
p +q =Kk + — — cos(@g. —¢@.)— j————(cos@, +sing. )+ j . cos@, +sing,
(L_77>2 (1_’_21.(1[77)2 L_77 ( K r) 1+2]6¥g77< K /c) (L—U)<1+2j0!g77>( r r)
2 2 2 . o 2 . 2 o .
exp P +gq ~ exp _jK' (1—}—2]05,677)(L 77)_]_ kr (1—1—2]61477) ; Dsg(L 77) +j/cr(1+2]aﬂ7)cos(¢’(_¢r)
a 2k(142ja,L) 200+ 2ja,L)(L—n) " k(1+2jam)(1+2ja,L) 142 ja,L
D,(L—n . D .
_lii(z—j%L)(cosyﬁK +51n¢,()—|—1_i_r2—;2€L(cos¢r +sing, ) (3.49)

Combine DZ, exp term of (3.38) with the third term of (3.49) to get

2 D% (L— ;

expl j 2 explj D) | o)y Dul (3.50)

k(1+2ja,m) k(1+2jam)(1+2jea,L) k(1+2ja,L)

. Jkr? . . . .
Further combine exp ﬁ outside the integration in (3.42) with second term of (3.49) to get
/)
g 2 k7’2 1 2 . g 2 . 2

exp kT exp|—j ( '+ ]am) = exp Jkr 1— 1+2]'a“77 =ex ——ka‘.r (3.51)

2(L—n) 2(1+2]a4L)(L—77) 2(L—n) 1+2ja,L 14+2ja,L

Now collect all terms to write for

(3.48)

19



ka,r? K* (1+2je,n)(L—n) jlcr(l—i-Zjam) kDy (L—n) ,
H ——Lt——05j —sZ
(F,¢r,’f,¢x,77> ] ;1_‘_2] /L p 1+2](Z/L J k(1+2]a/L> 1—|—2](Z/L (¢ ¢ ) (1+2 'aﬁL)<COS¢K +SIH¢K)
rD,, DL 20 4, ka,r* —(cos¢, +sing, )rD,, — jk 'D}L
e = 3.52
P 2ja L(COS¢ +Sln¢)+]k<1+2jafl/) ;sza,gLeXp 1+2ja,L (3-52)

which is the same as (3.39). Now for scintillation index m” (), we have to compute #( )H () and H(..,,..)H(..,—x,..). Since m*( ) will entail

integration over g, , it is best to handle this part of the integration during this process. For this, we consider only the relevant terms which are
third and fourth terms of the first exponential.

A) For H( )H ()

[ ] i AKI i A;Z — i i Aﬁl A;Z — 2 i AflAZZ (3 53)
i 2jay L2 -2ja) L (2 (14 2)a, L) (I—ZjaZIL) iaha+2j(e, —a, )L +da, a) I
kcx[lr2 kazzrz ) ay, —i—azz
[ eXp —m —_—* =CXp —kr _ 2 (354)
+2ja 1-2ja, L 1—|—2](a/ aez)L—|—4ap a, L
. expl05] K> (1+2ja€l77)(L—77) exp|0.5 K2 (1—2ja§277)(L—77) ~oxp _K’2 (L—n)2 o +a;2 (3:55)
k(14 2/, L) k(1-2ja 1] ko 1+42)le, o), )L+, a0
Jkr(1+2ja, n jxr(1=2ja, n 2kr(L—n)|a, +a,
e exp ( - h )cos(¢K—¢r)eXp— ( — )cos(¢K—¢r) = exp - *( 1 2)* 2cos(¢K—¢r) (3.56)
1+2ja, L 1-2ja; L 1+2j(, —a;, |L+4a, a1
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—%ﬂ(com +sing,)

B KDSZI (L_77>
k(1-2ja;,L

Pt S + 1
k(1+2ja[1L)<COS¢K sindic)

ex exp

[ ]
_ N\ Dy, (1=2ja, L)+ D, (1+2ja, L
=exp —(cos¢K+sin¢K)K(L ) Sél( L )* SZZ( - (1 ) (3.57)
k 1+2j(0‘z1 —azz)L+4a[laZ2L2
D D’ D,, (1-2ja, L)+D;, (1+2ja, L
e exp r—%(cos¢r+sin¢,)exp r—sgz*(cos;/),—i—sinqﬁ,) =exp{r(cosg, +sing,) 5[1( i )* SQ( - h ) (3.58)
1+2ja, L 1-2ja; L 1+2j(, —af, |L+4a, 0,17
2 0> )L D> (1—2ja L)~ (D> ) (1+2ja, L
° exp j—D“L exp|— —< Mz) —|=expq jL S[l( e ) ( Sﬂz)( J . ) (3.59)
k(1+2ja,, L) k(1-2ja) L) k[l+2j(a[1 —aéz)L+4aZ1a£2L2}

Now arrange for integration over ¢, such that

2
[ dé explic(pi cosg, + g sing, )| =271, (K\/pf +qf ) (3.60)

0

By associating (3.56) and (3.57) with (3.60), we identify p, and ¢, as

2r(L - 77)(0% +aj, ) Dy, (1 - ZJ'OCZQL) + Dy, (1 + 2ja,€1L)

p1_1+2'( —a, |L+4a, a A 1+2j(a, —a; 4a, o) 12
] C{Zl al/z) + (ZZICZZZL + ](0!1/1 aZZ)L_F aélasz
g = 2r{L =)o, +a,) ging, =[P (1=2/ai,L)+ D3, (1+2/e, L) (3.61)
: 1+2j(0% —aZZ)L+4a4 a Ik 1+2]'(0% —aZ)LH%aZLZ




1/2
This way ( pi+ai ) will be

(vi +q12)1/2 - 1+2j(a, —(OLtZ_>7174)+ 4o, ap I’ {4r2 (@, +a, )2 +ki2[DSZZ1 (1_2jaZzL>2 +(p, )* (sz“flL)z]
1 2 1 2
4DS/.1D:Z2 . * * 2 4}" * . L% * . "
k—2[1+2 Jaw, —ay, )L +4a, a5 ]—7(% +a, )(cosg, +sing, )| Dy, (1-2ja;, L)+ D, (1+2 Ja(,lL)] (3.62)

Now we continue with terms of H(..,x,..)H (..,—k,..)
B) For H(...x,.)H(..,—x,..)

2 4, 2 4 A4,

2 2
. 1 e B (3.63)
412_11+210‘z1L e’lz_llﬂsz%L e‘lz_uzz_llﬂsz(ael +ay, )L —d4a, o, I
2 2 .
.« exp|— ka[}r xp| - kayé.zr _ 2 a, ta, +4jo,a, L : (3.64)
1+2ja, L 1+2ja, L 142j(ay, +ap, )L—4a,a, L
K (14-2je, ) (L — (14 2ja, n)(L— 2L\ 4 jle, +a, J(L+n)—4 L
. oxp|-05; (142 z{n)( n) expl 0.5, (142, 4?77)( n) I (L—n) ](Ole‘] a,, )(L+7) a,g]azzzﬂ (565
k(l—i—ZJO%L) k(1+2]a€2L> k 14—2](01/‘1 +a52)L—4a41a42L
jl(r(l—l—ZjaZln) jlcr(l+2ja,€277) 21(1”(L—77)(05f1 —0%)
® exp - cos(@d. — ¢, )|exp|— - cos(g,. — =ex cos(@,. — 3.66
s e d)ew| sl g ) = e e, )L —da @ (be=4)|  (3:66)
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€X

p ——n(cosqﬁ,( +sing,.)

KDsé'l (L - ) _M(Cosgﬁk —|—sin¢K)

=P k(l + ZjaézL)

k(l + 2jaK1L)

«(L—n)| Dy (1+2jo, L)—Dy, (1+2ja, L
= exp|—(cosd, +sing,) (L=1) Ml( L ) %( 2 ) (3.67)
k 142j(a, +a, |L—4a,a, L
rD rD D, (14+2ja, L)+ D, (1+2ja, L
e cxp —ff‘(cosqﬁr +sing, )|exp #(cosqﬁr +sing, )| =exp{r(cosg, +sing, ) “1( - L ) %( 2 ) (3.68)
1+2ja, L 1+2ja, L 1+2j(ay, +a, | L—4a,a, L
2 D L D% (142ja, L)+ D? (14+2ja, L
o exp|/j DSZ.L exp|Jj 542. =exp1{ /L S/l( : L ) MZ( (12> (3.69)
k(1+2ja, L) k(1+2ja, L) K12/ (e, +ay, )L~ 4ay @, 0|
Now arrange for integration over ¢, such that
2z
fdgbK exp[ic(pz cosg@,. + g, sin ¢K)] =2rl, (K\/pg + qg ) (3.70)
0
By associating (3.66) and (3.67) with (3.70), we identify p, and ¢, as
. 2r(L—1)(a, e, cosg L= Dy, (142je, L)~ Dy, (142 L)
, = _
14—2j(054l +a/2)L—4a41a€2L2 ' k 14—2j(0541 +a[2>L—4agla(2L2
7, = 2r(L—77)(0!g1 _afz) sing, _L-—n Dy, (1+2jasz)_D5[2 (1+2j0(£1L) (3.71)
2 = :
1+2j(a(1 +a£2)L—4a(1a€2L2 "k 1+2j(a(1 +a£2>L74a41a€2L2
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, N
This way <p2 +q2) will be

1/2 L— 2 9 ) 2 _ 2
(p§ +q§) :1+2J'(0e41 +<05£2 )72)—40%0:@25 {4r2(0541 —afz) +k_2D5241 <1+2]a52L) + D3, (HZJ%L) }
4DSZIDS,€2 . 2 4r . . . .
_k—2{1+2j(% t+ay, )L—4a,a, L ]—7(% —a, )(cosg, +sing, )| Dy, (1+2/e;, L)~ Dy, 1+ 2je, L) (3.72)
By using
m*(r,L)=m*(r,4,,L)= 2<‘//1 (r,L)y, (r,L)>+ 2Re[<l//1 (r,L)y, (r,L)>]
L 2r 00
=4z [y [ag, [ dwx @, (x) {\H(r,¢r,x,¢K,n)\2 —|—Re[H(r,¢r,K,¢K,77)H(r,¢r,—K,¢K,77)]} (3.73)
0 0 0

After inserting for H ( ) in (3.73) from (3.52), using von-Karman spectrum and then performing the integration over ¢_ with the help of (3.70),

then scintillation index expression in (3.73) for sinusoidal hyperbolic Gaussian beam will become
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m*(r,¢,,L)= 2.6056k’C; {ZN:Z A/‘A;Z exp[—kr2 Sy TH, +a;2 ]exp r(sing, +cos¢,.)DM' (1_2ja[2L>+DMZ (1+2jal'L>
o Gy C, C.
, Dz1 (1 2ja, L) (D;z )2 (1+2j04 L Lo exp €2f<52 /35. 05] K (L—n)z (aé,l +04:2)
e\t kCa, ‘[ [ (K +ar12) " P kC,,
I [ﬁ- Lc_ {ar* (o, +a, )2 +4 D“"IZZ?C”’“ + %[D@I (1-2ja; L)+ (D}, )2 (142 jOz(]L)]
da

4r

1/2
_TO(% +a;, )(sing, +cosg,)| D,, (1-2ja; L)~ D}, (142 j%L)]} U (.6, L)

D}, (142ja, L)+ D}, (142ja, L)
kC,,

ii 4,4, exp| O‘zl +o, +4jo,a, L
CdC Cdc

0=11,=1

Re

exp|jL

D, (1+2ja, L)+D, (1+2ja,L) ]dn jdm exp| (27 /35.05)]
Cue O e P

xexp|r(sing, +cosd, )

{47 (a —a )2 +2 [DS/" ~ D 2 <DS” @, — D, )Lr
‘ ‘,

-/-%2 (L—77> [l—l—j(L—l—n)(%1 +a[2)—4a€1a[2nL}
Xexpy—J k C I,
dc

4y (% —a,, )(sin ¢, +cos@,)

12
[Dsgl —DS[2 +2j(Dsﬂ10%2 —Dsﬁzoéél >L]]

where
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Co=1+2j(a, —a; | L+4a,a, I

a

 =1+2j(e, +a, |L—4a,a, ' (3.75)

¢, : Inner scale of turbulence, L: Outer scale of turbulence

Cd

Lab exercise, the above is given in Scin_SinoHyp L.m MATLAB file on the course webpage. Find and compare scintillation values from this m

file and to the graphs provided in A15 and A16.
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4. Scintillation Formulation via Extended Huygens-Fresnel Integral

For this method we go back to (R23) which is

o (r,1) AL L)
(1(r.L)

—1 (4.0)
which means that we have to evaluate <1 ? (r,L)> , 1.e. average squared intensity (on receiver plane) and <1 (r,L)>, i.e. average intensity, The
latter, <I (r,L>> is relatively easy and given by (1.6) or (1.7), while <I 2 (r,L)> is relatively difficult, since in this case we need y (r,s)in the fourth

order, i.e., <¢//(r,s1)+yx* (r,8,)+w(r,s3)+y (1.8, )> . Note that in <I(r,L)>, second order of y(r,s), i.e. <y/(r,s1)+ v (r,s2)> is used as also

apparent from (1.6) and (1.7). From the literature, we get the fourth order moment (in Cartesian coordinates) as (only the x part is shown)

<exp[¢(rvsl>+¢* (r9s2>+w<r’s3)+¢* (r9s4)]> = exp _Lz<slzx _S22x +S32x _ij _2S1xs3x +2S2xs4x>

XS
X lexp

1 2 2 2 2
__2(S1x + SZx + S3x + S4x - 2S1xs2x + 2S1xS3x - 2Sle4x - 2S2xS3x + 2S2xS4x - 2S3xs4x)

Py
2 1 2 2 2 2
+ 20, exp __2(2Slx 85, 285, 5y, — 28,8y, — 28,8, — 28,85, +28,,8,, — 2S3xS4x)
t
2 1 2 2 2 2
+20X eXp __2<S1x + 2S2x + S3x + 2S4x - 2S1xs2x + 2S1x‘S3x - 2Sl)cs4)c - 2S2xS3x - 2S3xs4x) } (42)
t

27



In the classic approach, we would attempt to derive <I : (r,L)> and <I (r,L)> by hand and thus obtain analytic expressions. While this is
valuable, it is also difficult, particularly in the case of hand derivation of <I 2 (r,L)> . We could use numeric integration, but then the correct

estimation of lower and upper limits (to be used instead of minus infinity and plus infinity) create problems, besides <I 2 (r,L)> entails at least

quadruple integration.

To solve these problems, we have developed a semi-analytic method, which we now explain.

Let’s take either the x (one dimensional) part of <I : (r,L)> or the whole of <I (r,L)> , for the beams within our interest, the quadruple integral in

these two cases would look like

=]
<exp

X xp( 2nt, —2nt, —2nt, — 2r4t4)l‘1"1 [ A (4.3)

2 %8
%g
g ——2

dt,dt,dtdt,exp (_Q11t12 oty — Q33t32 —quls ) €Xp (_2Q12t1t2 —2q,3tty — 2q,,t, — 2G50 — 2q,,05t, — 2‘]34t3t4)

3

To reduce the quadruple integral of (4.3) to the case of a single integral, initially we isolate one integral, namely the one with respect to ¢, as

follows

dtzdt3dt4exp<—q22t22 — sty = quts =208 — 24,11, —2q34t3t4>eXp (—27‘2t2 —2nt 2r4 nztmtm’ fdt exp —quty —2rt ) (4.4)

>\.
8%8

111

g ——2
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where 7, =1 +q,t, +q,3t; + g,,7,- Now using a modified version 3.462.2 of [I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series and

Products (Academic, 2000)] which is

S 2\ |n/2] . n=2i
fa’t exp(—qt2 —2rt>t" = n!exp[r—]z . L(E+12) [—1] (4.5)

q )= """ (n-20)12) ¢

The isolated integral in (4.4) can be solved, hence (4.4) will reduce to the following triple integral

" 7,2 ]lnl/zJ l+1/2 00 00 o0 [ q qz q
I=(—1)"nlexp — dt,dt,dt,exp|—| gy, — 2|65 —| Gy — 2|17 —| gy — 22|12
( ) 1 [%1 12; i +1/2(n1 21)'(21)"[0[0[0 e 2 qn ? ¥ qn } 44 qn !
X exp —2[q23—q12q13]t2t3 _2[q24 %2‘]14] —2|gy, — %3‘114Jt t,lexp _2[},2 _’i‘]lz]tz _2[’,3_’W13]t3_2[,,4_’”1‘]14]t4
11 11 i qn
Xty 5t (’”1 + Gt T3t +Q14t4)n]_ l (4.6)

The last term of (4.6) can be expanded via Binomial formula, and the result can be rearranged so that integral with respect to ¢, can be managed

individually again by the use of (4.5). The development continues in this manner until all the integrations have been performed. To facilitate an

easy track of equation development, the Matlab function ExpPolyHerm4 is organized as the main function plus the others named ExpPoly4,

ExpPoly3, ExpPoly2, ExpPolyl, which call each other in numeric sequence to transform the quadruple integral into triple, quadruple and single

integrals, while the main function ExpPolyHerm4 initiates the first call and makes the final evaluation. The Hermite polynomials can be handled

by writing for their series expansions and embedding the arising powers of ¢, t,, t; and ¢, into n,, n,, n, and n, in (4.3).
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Below we illustrate the use of this semi-analytic method. For this, we take the Cartesian coordinate representation of (lowest order) Sinusoidal

Hyperbolic Gaussian beam which is

S( S, }) ZA exp[ (0.5kaﬂsf—ngsxﬂexp[—(O.Skaﬂsi—Dyésy>

4.7)

After adding partial coherence to this beam, we get the mutual coherence function of the source as

2 2 2 2
Slx +S2x +S1y +S2y _2S1xs2x _2S1ys2y

207

N

Fs <S1x7S1y3s2x3s2y) = exp -

zN:Aﬁ1 exp[—(O.Skamsfx —nglslx)]exp[—(O.Skaﬂlsi —Dyﬁlsly)
/=1

N
XY~ 4}, exp|—(0.5kal, 52, — D, 5, )|exp|—(0.5ka, 53, = D, s, ) (4.8)
(,=1
The corresponding extended Huygens-Fresnel integral is
k 2 X = * TTTT S1x+s22x+S12y+S22y_2slxs2x_2slys2y
<1(rv,rV,L)>— [%] ;Aﬁ;AH—L f fOO[Odslvdslydszxdsh exp[ 207
xexp[—(O.Skaﬂ,lsfx —D,, s, +0.5ka,, s;, —Dyhsly) exp{—(O.Ska;zsh D;, s, +0.5ka,, s, — D), s,, )}
ik s2 45t 45 457 —2s 5, —28 8
X eXp ;—L(sfx — 21,8, +5), =28, — 55, + 25,8, — 5, —i—2rys2y> exp|———> 2 wx L (4.9)
Py

Now all we have to do is prepare the following matrices
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91 92 93 Y

Q=T o n hid R_(n sy om), N=(momy omyomy), M:[’”l S ’"j (4.10)
93 93 933 934

Q4 9oa Y3a Yas

where the elements are to be determined by making an association between (4.3) and (4.9) and then writing the following equivalences

1 gk 1 1 1

Q11:0'5kax€1+203 _Z_'_,O_,z ) %2:_E__12:%4 s 43 =¢4=0
. 1 jk 1

qn = O'Skaxéz + 203 +Z+7 s Gy =G=0

1 jk 1 * 1 jk 1

=0.5%a,, + —_—t— =0.5ka , + +—+— 4.11
qs; yt, 20_5 Y ptz 44 ye, 20_3 Y ptz ( )
Jkr. . Jkr, Jkr . Jkr

n= _0~5Dx41 +E , 1= —O.SDM2 - , 1= _O'SDy/, + 2Ly , ,==05D, — - (4.12)
n=n=n=n=0 m=m,=m=m,=0 ¢=c,=c;=c¢,=0 (4.13)

Note that matrix M refers to the existence of Hermite polynomials, i.e. higher orders in the source expression of (4.7). In the present case, since
we deal with lowest order, all matrix elements of M are zero.

Exercise 4.1 : Now we turn to a MATLAB exercise. On the course webpage you will find the m code Sino_ Hyp Her4.m which plots the source,
thatis /, (Sx,Sy> =T, (sx =58, =5,,,5, =5

=95, y) and receiver, that is <I (rx, ry,L)> , intensity profiles along the slanted axis. Run this m file for

all beam types (4.7) is able to generate, i.e. Gaussian, cos Gaussian, cosh Gaussian, sine Gaussian, sinh Gaussian, annular Gaussian beams,
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comparing at least two readings of each beam intensity levels with those produced by ParCoh_SinoHypR _tur.m or Transmittance635.m at the

same source and propagation settings. Note that to evaluate <I (r r L)> by the semi-analytic method, you have to download from the course

x2'yo
webpage the m files, exppolyl.m, exppoly2.m, exppoly3.m, exppoly4.m, ExpPolyHermLagu401.m which can handle source beams

incorporating Laguerre polynomials as well.
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Evaluation of <1 2 (r,L)> via semi-analytic method

For this we initially write for <I : (r, L)> for the x part only, which is

<12 (rx,L) (27TL 2 z Z z zdslxdshds3xds4x].“s (slx,sh, 83008, )exp %(sfx —sa 4 si —s; =2, +2rs, —2rs, + 2rxs4x)
X exp _p%z;s(slzx — s 483 =85, — 28,8, + 252xs4x> {exp —?(sfx 85 b se sy — 28,8, 28, 85, — 25,5, — 28,5, +25,.5, — 2s3xs4x)
+ 20 ' exp _pi<2slv +85 250 45y =288, — 28,8, — 28,5, +25,.5, — 2s3xs4x>
:
—|—2Ui exp —iz(sfx + 253 455 4250 — 28,8, +25,.5,, — 28,85, —28, 8, — 2s3xs4x) } (4.14)
i

where for a Kolmogorov spectrum, that is @, (x)=0.033C;x""°, o7 =0.124C;k"°L"°, p ¢ = (O 1134k™°C? LS”’) "*(4.14) is in the form of

<I2 (rx,L)> 1, +1, +1. .This means <I ( )>Wi11 be
<12 (ry,L)> =1, +1, +1..Then <12 (r,L)> will be obtained from

<12(r,L>>:<12<KY,L)>0<12(ry,L)>:(]Ax-|—]Bx—|—]Cx) o (1 +1g+10,) =1, 0y + 1] (4.15)

Bx™ By Cx~Cy
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Hence <I 2 (r, L)> can be evaluated in two steps once by calling ExpPolyHermLagu401.m for x part, then calling the same for y part. Note also
that (4.15) points to a dot product multiplication. Now by inserting the x part of Sinusoidal Hyperbolic Gaussian beam for ', (s, ,S,., 85,5, )»

(4.14) will become

2 2 2 2
Slx + S2x + S3x + S4x — 2S1xs2x — 2S3xs4x

<12 (I’X,L)> _ k* /ZN:ZN:ZN:ZN: AIIA; A(3 A; zzzzdsudshdskds‘” CXP[— 20_3

(27TL)4 (=1 (=1 (=1 (=1
X exp —(O.Skax[lsfx + O.Skoz;zszzx + O.Skaxfssgx + O.Ska;“sfx + 0.5kozy[ls12yﬂexp (szlsu +D, s, +D,, s, +Dx[4s4x)

ik
X eXp é_L<S12x - S22x + S32x - ij - 2rxslx + 2’/jrs2x - 2’;S3x + 27')cs4x>
{exp

1
2 2 2 2
__2<2S1x + S2x + 2S3x + S4x - 2S1xs2x - 2’S1xS4x - 2S2xS3x + 2S2xs4x - 2S3xs4x>

t

1
2 2 2 2
- _z(slx + S2x + S3x + S4x - ZSIXSZX + 2S1xs3x - 2S1xs4x - 2S2.¥S3x + 252xs4x - 2S3xs4x)

j 2 2 2 2
X exp - (Slx - S2x + S3x - S4x - 2S1xs3x + 2S2xs4x>
t

2
XS

+ 20§ exp

1 2 2 2 2
__2(Slx + 2S2x + SSx + 2S4x - 2Slxs2x + 2S1xs3x - 2Slx's4x - 2s2xs3x - 2S3xs4x)

t

+207 exp } (4.16)

Now by making an association between the alike integration variables of (HF3) and (HF16), it is possible to construct the following matrices.

Keep in mind that for Q . matrix we have to prepare slightly different matrices of Q ., Q, , Q.. as apparent from (HF15)



1 jk ., j 9, 1 1 joo 4, 1
0.5ker,, +—r—2 L4 20 _— S S L -
1207 2L pk p; 207 p} Py P 7
1 1 * 1 ]k J 9,2 1 J Do,
——— 0.5ka, +—+2—-L-+—=~ -— + =2
Q.- 207 p} “ 207 2L pi pf p; P P
* P4, 1 1 05jk, j 4, 11
_L2+ 1351 2 O'Skaxé3+F_Tj+ é +L; _2 2 2
pxs pt pt US pxs pt Us Iot
1 Jo 1 1 Y Y
-—— +—=0 —— 0.5k, +—++——2-+—2
p; Py P} 207 p} Y200 2L pi pf

1 forQ, and Q. 1 forQ, and Q. 1 forQ, and Q,, 1 forQ, and Q.
G = > s = by, = s Gy = (4.17a)

2 for Q,, 0 for Q,, 2 for Q. 0 forQ,

R =[-05D, + _osp I _osp LI _gsip I
' Y Y Sy *

oo
Jkr, . Jkr Jkr, . Jkr
Ry:(—o.SDy“z—Ly —O.SDM—z—Ly -0.5D,, + 2Ly -0.5/D,, - 2; (4.17b)
N.=(0 0 0 0) , N,=(0 0 0 0) (4.17¢)
00 0 0 00 00
M, = , M. = (4.17d)
00 00 1o 0 0 0

For smaller matrices, R, N, M, both x and y parts are shown in (4.17).

Exercise 4.2 : Exercise Now we turn to a MATLAB exercise. On the course webpage you will find the m code Sino Hyp Her4HFScin.m. Use

this m file to generate scintillation plots for the same Gaussian, cos Gaussian, cosh Gaussian, sine Gaussian, sinh Gaussian and annular Gaussian
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beams which are displayed in Figs. 1 to 10 of the article entitled, “Scintillation calculations for partially coherent general beams via extended
Huygens Fresnel integral and self-designed Matlab function”, which is also available on course webpage (Fig. 1 of this article is reproduced in
Fig. 4.1 below). Also plot the scintillation index curves for partially coherent versions of these beams. Furthermore, for off-axis positions, where

T 1y # 0, repeat the above.
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Fig. 4.1 Fig. 1of the article entitled, “Scintillation calculations for partially coherent general beams via extended Huygens Fresnel integral and

self-designed Matlab function”.
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5. Complex Degree of Coherence

Now we study the complex degree of coherence, ,u( )which is expressed by

T, (l‘l,l'z,L)|
T, (rl,rl,L)\/Fr (ry,ry, L)

(5.1)

u(rl,rz,L):\/

where I, ( )is a two point mutual coherence function. If a source beam having a two point mutual coherence function of I, ( ) propagates in

turbulence for a distance of L, then I', ( )can be defined as

T, (rl,rz,L):k2/<27TL)2 f fdzsldzszfs (sl,sz)exp{jk“rl—slf—|r2—s2|2]/(2L)}
Xexp{—[|sl—s2|2+<s1—sz)o<r1—r2)+|rl—r2|2l/p,2} (5.2)

Note that in (5.2), in the turbulence exponential, there is the extra term of (s1 —S, ) ° (r1 — rz) , where e signifies dot product, arising since on the
left hand side of the equation, mutual coherence function rather than intensity is required. Remember that in intensity expression I, =¥, , thus
(s1 -, ) ° (r1 — r2> equates to zero. In the present study, we take the source to be a partially coherent sinusoidal hyperbolic Gaussian beam in

Cartesian coordinates, then from (5.9) of Notes for ECE 635 Eylul 2011, we have
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2 2 2 2
Slx +S2x +S1y +S2y _2S1xs2x _2S1y52y

Fs <Sl9s2> = Fs <S1x9slyis2xﬂs2y) = eXp[—

207
X i 45 exp[— (O.Ska;zszzx —D,, s,, )] exp {— (O.Ska;zszzy —D,, s,, ) (5.3)
0,=1
Inserting (5.3) into (5.2), we get
5 N N . o
T, (r,r,L)=0.50" exp[ (R =1 41 =1, exp|—(n, =1, +11, =15, ) 102D 0D A, 4 WEEy (5.4)
6=1t,=1 R{f;

The various terms in (CDC4) are defined as follows (for x part only)

P, =0.5k[0.25ka, o, 07 p} + (e, +ai, ) (0507 402507 ) +0.5/b0’p} (v, — i, )4b70 20} /K]
0, = (1, —n,)(=1.5jb0lp} —0.5jbp; +0.25ka,, 02 p} ) +0.5 jbo’p; (ke —2jb)r,, +p! D, C, +p; D, (0.507 +0.250] )

C, =0.25ka,, 07p; +0.507 +0.25p] = 0.5 jba; p} (5.5)

é Agl eXp[-(O.Skozxf]Sfx — szlsu )} exp[—(O.Skozﬂlsfy — Dyélsly )}

After evaluating I, (rl,rz,L) as shown in (CDC4), we can retrieve I, (rl 1 ,L) and T', (rz,rz,L) simply by equating r, and r, . The relevant m

code is contained in ComplexD coh ECE646.m.
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Lab Exercise

1) Verify the derivation (5.4)

2) By running the code given in ComplexD coh ECE646.m file, match your figures pointwise with those of Figs. 1, 2, 3,4, 6, 7, 8, 9 of the
article, H. T. Eyyuboglu, Y. Baykal ve Y. Cai, “Complex degree of coherence for partially coherent general beams in atmospheric
turbulence”, Journal of the Optical Society of America A (JOSA A), 24(9), 2891-2901 (2007) whose pdf copy is given on the course
webpage.

3) Note that in the present setting, ComplexD coh ECE646.m runs for five beams, namely cosh Gaussian beam, cos Gaussian beam,
Gaussian beam, annular Gaussian beam and higher order Gaussian beam. The last beam is not covered in the present formulation.
Replace this last beam settings alternately by sine and sinh Gaussian beams, taking into account the zero crossings of these beams at on-
axis point.

4) Prepare your report and hand it to me in paper format.
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